<%server.execute "isdev.asp"%> Rare and treatable cause of early-onset refractory absence seizures Panandikar GA, Ravat SH, Ansari RR, Desai KM - J Pediatr Neurosci
home : about us : ahead of print : current issue : archives search instructions : subscriptionLogin 
Users online: 703      Small font sizeDefault font sizeIncrease font size Print this page Email this page


 
  Table of Contents    
CASE REPORTS
Year : 2018  |  Volume : 13  |  Issue : 3  |  Page : 358-361
 

Rare and treatable cause of early-onset refractory absence seizures


Department of Neurology, King Edward Memorial Hospital and Seth Gordhandas Sunderdas Medical College, Mumbai, Maharashtra, India

Date of Web Publication7-Sep-2018

Correspondence Address:
Dr. Gajanan A Panandikar
Room No. 1307, King Edward Memorial (KEM) UG PG Hostel, KEM Hospital Campus, Parel, Mumbai, Maharashtra 400012
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/JPN.JPN_146_17

Rights and Permissions

 

   Abstract 


Glut-1 transporter deficiency syndrome (GLUT1-DS) is a rare disorder caused by the mutation in SLC2A1 gene, which results in impaired glucose transport into the brain. It has a broad spectrum of phenotypic presentation ranging from cognitive decline, microcephaly, and refractory seizures to complex movement disorder. Recognition of this disorder is necessary as it is refractory to antiepileptic drugs (AEDs) and responds significantly to ketogenic diet. We report a case of 7-year-old girl who presented with paroxysmal eye movements in infancy with early-onset absence epilepsy (EOAE), which worsened in early morning and on fasting and was found to be refractory to four AEDs. She had mild developmental delay and subtle ataxia. Cerebrospinal fluid showed hypoglycorrhachia, and molecular analysis identified deletion in exon 4 of SLC2A1 gene (p.leu169del), thus confirming GLUT1-DS. She had a near-complete seizure control on ketogenic diet. Thus, GLUT1-DS should be suspected in all cases of refractory generalized seizures specially EOAE, especially if it worsens on fasting, is associated with development delay, positive family history, or paroxysmal movement disorder.


Keywords: Early-onset absence seizure, Glut-1 deficiency, ketogenic diet, refractory absence seizures


How to cite this article:
Panandikar GA, Ravat SH, Ansari RR, Desai KM. Rare and treatable cause of early-onset refractory absence seizures. J Pediatr Neurosci 2018;13:358-61

How to cite this URL:
Panandikar GA, Ravat SH, Ansari RR, Desai KM. Rare and treatable cause of early-onset refractory absence seizures. J Pediatr Neurosci [serial online] 2018 [cited 2018 Dec 11];13:358-61. Available from: http://www.pediatricneurosciences.com/text.asp?2018/13/3/358/240773





   Introduction Top


Glut-1 transporter deficiency syndrome (GLUT1-DS) is a rare treatable disorder caused by the mutation in SLC2A1 gene, which interferes with glucose transport across blood–brain barrier. Less than 300 cases have been reported worldwide. Its spectrum ranges from classical infantile epileptic encephalopathy to atypical forms such as paroxysmal dystonia, alternating hemiplegia, and migraine. It should be considered in the differential diagnosis of any form of intractable epilepsy,[1] especially early-onset absence seizures in which 12% patients may have this disorder.[2] Cerebrospinal fluid (CSF) hypoglycorrhachia and detection of SLC2A1 mutation can establish diagnosis. Early recognition is important as these seizures are usually refractory to antiepileptic drugs (AEDs), and initiation of ketogenic diet (KD) can control seizures significantly and improve neurological outcome.


   Case History Top


A 7-year-old girl born of nonconsanguineous marriage presented with absence seizures since 2 years of age, associated with head drop and occasional falls with a frequency of 100–200 times daily, which worsened on fasting and in early morning. She also had paroxysmal eye movements in the form of upward nystagmoid jerks lasting for a few seconds since 7 months of age. Birth history was insignificant, and no positive family history was observed. She had mild global developmental delay and poor scholastic performance. She had microcephaly (45cm), mild lower limb spasticity, and subtle cerebellar signs. Her seizures were precipitated on hyperventilation. She was initially treated with valproate without significant relief, and gradually valproate, lamotrigine, nitrazepam, and phenobarbitone were added but she continued to have seizures. Electroencephalogram (EEG) showed runs of 3–4 Hz generalized spike and wave discharges lasting for 4–10s [Figure 1]. Magnetic resonance imaging of brain was normal. For considering the diagnosis of refractory early-onset absence epilepsy (EOAE), pre and 1 and 2h postprandial EEG were performed, which showed significant postprandial decrease in seizures and epileptiform discharges. CSF showed hypoglycorrhachia (CSF glucose, 28 mg%; CSF/serum glucose ratio of 0.39). GLUT1-DS diagnosis was confirmed by identifying deletion in exon 4 of SLC2A1 gene (p.leu169del). KD was started and valproate, phenobarbitone, and nitrazepam were gradually tapered and stopped. She had marked improvement in seizure frequency; only occasional seizures were reported. She started going back to school. We plan to start the modified Atkins diet once she reaches adulthood.
Figure 1: EEG showing 3–4 Hz generalized spike and waves discharges lasting for 7–8 s

Click here to view



   Discussion Top


GLUT1-DS is a rare and underrecognized disorder caused by the mutation in SLC2A1 gene, which interferes with glucose transport. Most mutations are de novo, and familial cases have autosomal-dominant inheritance.

GLUT1-DS is a broad-spectrum disorder, and classifying the disease phenotype as “classical” or “nonclassical” has limited clinical utility. Recent phenotypic classification includes three categories: (1) classic, complex phenotype with intellectual disability in combination with epilepsy or a movement disorder, (2) “epilepsy-dominant” phenotype, with epilepsy as main symptom, sometimes in combination with a paroxysmal movement disorder such as paroxysmal exertion-induced dystonia (PED), but without intellectual disability, and (3) “movement disorder–dominant” phenotype characterized by an isolated movement disorder (mostly PED) without intellectual disability and without epilepsy.[3]

In classic GLUT1-DS, seizures begin between 1 and 6 months of age and may present with subtle myoclonic limb jerks with alternating staring and eye-rolling, horizontal roving eye movements, unresponsiveness, and head bobbing. EEG may show multifocal spike discharges.[4],[5],[6] Apneic episodes and abnormal episodic eye movements indistinguishable from opsoclonus may precede the onset of seizures.[4] Our patient had similar opsoclonus-like eye movements in infancy and later on developed EOAE at 2 years of age.

In a review of 87 patients, 90% had epilepsy with a mean age of 8 months at onset. The different types of seizures were generalized tonic–clonic (53%), absence (49%), complex partial (37%), myoclonic (27%), drop (26%), tonic (12%), simple partial (3%), and spasms (3%).[5]

With brain maturation, the seizures become synchronized and manifest as generalized events associated with 3–4 Hz spike and wave discharges.[4] EOAE is a rare type of generalized epilepsy with onset before 4 years of age. GLUT1-DS has been reported in 10%–12% of EOAE.[2] Refractory absence seizures are seen in 50% cases especially in EOAE.

Most frequent movement disorders are gait disturbances such as ataxia with/without spasticity (89%), dystonia (86%), chorea (75%), cerebellar tremor (70%), paroxysmal events (28%), dyspraxia (21%), and myoclonus (16%).[5] This can fluctuate during stressors such as fasting, infection, prolonged exercise, and anxiety.

Our patient had EOAE refractory to multiple AEDs and characteristic aggravation on fasting.

Acquired microcephaly is seen frequently.[4]

Speech and language impairment are observed in all affected individuals. Dysarthria and disfluency are common.[4]

GLUT1-DS should be suspected in children of any age presenting with a single or a combination of the following features[1]:

  1. Any form of intractable epilepsy particularly EOAE


  2. Global developmental delay, particularly in speech


  3. Complex movement disorders


  4. Paroxysmal events triggered by exercise, exertion, or fasting


  5. Family history of movement disorder and/or seizures



   Diagnosis Top


Initial step is lumbar puncture after 4–6h of fast. Hypoglycorrhachia is a major characteristic in GLUT1-DS (<60mg/dL in all cases, <40mg/dL in >90% cases, 41–52mg/dL in approximately 10% cases). CSF to blood glucose ratio should be <0.45. CSF lactate concentration is low and usually <11.7mg/dL (5.4–13.5mg/dL).[4]

Rarely in mild variants of GLUT1-DS, EOAE, and PED, absent hypoglycorrhachia has been reported.[1]

Hence, molecular analysis of the SLC2A1 gene has become the gold standard for diagnosis. A total of 70%–80% of patients carry SLC2A1 mutations.[7] In SLC2A1-negative patients, the diagnosis of GLUT1-DS can be considered affirmative if definite hypoglycorrhachia is present.

Erythrocyte glucose uptake assay can be performed in such cases. Uptake is reduced in all patients with 35-74 percent reduction in uptake in assays.[8]

EEG recordings in fasting and postprandial state can be helpful. If fasting EEG is abnormal, a postprandial EEG (1 and 2h) might show improvement as was seen in our patient.

Our patient had epilepsy-dominant phenotype with refractory EOAE. CSF hypoglycorrhachia with positive SLC2A1 mutation confirmed the diagnosis of GLUT1-DS.

Brain fluorodeoxyglucose PET findings are distinctive with diffuse hypometabolism of the cerebral cortex and regional hypometabolism of the cerebellum and thalamus with relatively preserved basal ganglia metabolism.[9]

The mainstay of treatment is KD, which provides an alternative fuel for brain metabolism. It is well tolerated and highly effective in controlling seizures and improving gait disturbance, but its impact on developmental delay appears less prominent.[4] However, newer studies show cognition improvement in children and improved alertness in adults. Introduction of KD in the first years of life guarantees a better cognitive outcome. The modified Atkins diet has been used successfully.[10]

AEDs are ineffective or offer limited improvement. Phenobarbital, valproate, acetazolamide, topiramate, and zonisamide are relatively contraindicated as adjunctive treatment in children on KD.

Our patient had remarkable seizure control on KD. She is currently only on lamotrigine and has only occasional seizures in 6 months. Thus, early recognition of GLUT1-DS is important for early initiation of KD, which controls seizures and also improves neurological outcome in these patients.

Acknowledgement

We thank Dr. Priyanka Walzade, Senior Resident Neurology, for her contribution toward logistics in writing the paper.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
   References Top

1.
Klepper J. GLUT1 deficiency syndrome in clinical practice. Epilepsy Res 2012;13:272-7.  Back to cited text no. 1
    
2.
Arsov T, Mullen SA, Damiano JA, Lawrence KM, Huh LL, Nolan M, et al. Early onset absence epilepsy: 1 in 10 cases is caused by GLUT1 deficiency. Epilepsia 2012;13:204-7.  Back to cited text no. 2
    
3.
Leen WG, Taher M, Verbeek MM, Kamsteeg EJ, van de Warrenburg BP, Willemsen MA. GLUT1 deficiency syndrome into adulthood: a follow-up study. J. Neurol 2014;13: 589-99.  Back to cited text no. 3
    
4.
Wang D, Pascual JM, De Vivo D. Glucose transporter type 1 deficiency syndrome. 2002 Jul 30 [Updated 2015 Jan 22]. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., editors. SourceGeneReviews® [Internet]. Seattle (WA) : University of Washington, Seattle; 1993–2018. 2002 Jul 30 [updated 2018 Mar 1].  Back to cited text no. 4
    
5.
Pong AW, Geary BR, Engelstad KM, Natarajan A, Yang H, De Vivo DC. Glucose transporter type I deficiency syndrome: epilepsy phenotypes and outcomes. Epilepsia 2012;13:1503-10.  Back to cited text no. 5
    
6.
Pons R, Collins A, Rotstein M, Engelstad K, De Vivo DC. The spectrum of movement disorders in Glut-1 deficiency. Mov Disord Off J Mov Disord Soc 2010;13:275-81.  Back to cited text no. 6
    
7.
Klepper J. Absence of SLC2A1 mutations does not exclude Glut1 deficiency syndrome. Neuropediatrics 2013;13:235-6.  Back to cited text no. 7
    
8.
Yang H, Wang D, Engelstad K, Bagay L, Wei Y, Rotstein M, et al Glut1 deficiency syndrome and erythrocyte glucose uptake assay. Ann Neurol 2011;13: 996-1005.  Back to cited text no. 8
    
9.
Pascual JM, Van Heertum RL, Wang D, Engelstad K, De Vivo DC. Imaging the metabolic footprint of Glut1 deficiency on the brain. Ann Neurol 2002;13:458-64.  Back to cited text no. 9
    
10.
Ito S, Oguni H, Ito Y, Ishigaki K, Ohinata J, Osawa M. Modified Atkins diet therapy for a case with glucose transporter type 1 deficiency syndrome. Brain Dev 2008;13: 226-8.  Back to cited text no. 10
    


    Figures

  [Figure 1]



 

Top
Print this article  Email this article
 
 
  Search
 
  
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Article in PDF (1,043 KB)
    Citation Manager
    Access Statistics
    Reader Comments
    Email Alert *
    Add to My List *
* Registration required (free)  


    Abstract
   Introduction
   Case History
   Discussion
   Diagnosis
    References
    Article Figures

 Article Access Statistics
    Viewed305    
    Printed5    
    Emailed0    
    PDF Downloaded28    
    Comments [Add]    

Recommend this journal