<%server.execute "isdev.asp"%> Parieto-occipital encephalomalacia in children; clinical and electrophysiological features of twenty-seven cases Karaoglu P, Polat AI, Yis U, Hiz S - J Pediatr Neurosci
home : about us : ahead of print : current issue : archives search instructions : subscriptionLogin 
Users online: 832      Small font sizeDefault font sizeIncrease font size Print this page Email this page


 
  Table of Contents    
ORIGINAL ARTICLE
Year : 2015  |  Volume : 10  |  Issue : 2  |  Page : 103-107
 

Parieto-occipital encephalomalacia in children; clinical and electrophysiological features of twenty-seven cases


Department of Pediatric Neurology, Dokuz Eylul University Medical School, 35340, Inciralti, Izmir, Turkey

Date of Web Publication22-Jun-2015

Correspondence Address:
Pakize Karaoglu
Department of Pediatric Neurology, Dokuz Eylul University Medical School, 35340, Inciralti, Izmir
Turkey
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1817-1745.159187

Rights and Permissions

 

   Abstract 

Context: Brain injuries occurring at a particular time may cause damages in well-defined regions of brain. Perinatal hypoxic ischemic encephalopathy and hypoglycemia are some of the most common types of brain injuries. Neonatal hypoglycemia can cause abnormal myelination in parietal and occipital lobes resulting in parieto-occipital encephalomalacia. There is a small number of studies about clinical and electroencephalographic (EEG) features of children with parieto-occipital encephalomalacia. They might have important neurologic sequelae such as cortical visual loss, seizures, and psychomotor retardation. Aims: We aimed to evaluate the causes of parieto-occipital encephalomalacia and evaluate the clinical and electrophysiological features of children with parieto-occipital encephalomalacia. Settings and Design: We evaluated clinical features and EEGs of 27 children with parieto-occipital encephalomalacia. Statistical Analysis Used: Descriptive statistics were used. Results: Hospitalization during the neonatal period was the most common cause (88.9%) of parieto-occipital brain injury. Eleven patients (40.7%) had a history of neonatal hypoglycemia. Twenty-three patients (85.2%) had epilepsy and nine of the epileptic patients (39%) had refractory seizures. Most of the patients had bilateral (50%) epileptic discharges originating from temporal, parietal, and occipital lobes (56.2%). However, some patients had frontal sharp waves and some had continuous spike and wave discharges during sleep. Visual abnormalities were evident in 15 (55.6%) patients. Twenty-two (81.5%) had psychomotor retardation. Fine motor skills, social contact and language development were impaired more than gross motor skills. Conclusions: In our study, most of the patients with parieto-occipital encephalomalacia had an eventful perinatal history. Epilepsy, psychomotor retardation, and visual problems were common neurologic complications.


Keywords: Children, epilepsy, parieto-occipital encephalomalacia


How to cite this article:
Karaoglu P, Polat AI, Yis U, Hiz S. Parieto-occipital encephalomalacia in children; clinical and electrophysiological features of twenty-seven cases. J Pediatr Neurosci 2015;10:103-7

How to cite this URL:
Karaoglu P, Polat AI, Yis U, Hiz S. Parieto-occipital encephalomalacia in children; clinical and electrophysiological features of twenty-seven cases. J Pediatr Neurosci [serial online] 2015 [cited 2019 Jul 20];10:103-7. Available from: http://www.pediatricneurosciences.com/text.asp?2015/10/2/103/159187



   Introduction Top


Anoxia and hypoglycemia can damage developing neonatal brain. [1] Magnetic resonance imaging of patients with symptomatic neonatal hypoglycemia can show abnormal and delayed myelination in the parieto-occipital regions of the brain. [1] Children with parieto-occipital encephalomalacia can present with neurodevelopmental deficits in later life. [2],[3] Why parietal and occipital lobes are the affected regions is not exactly known. [2] Cognitive impairment, motor impairment, seizures, microcephaly, visual impairments are common reported outcomes and there is no clear indicator of later outcomes. [4],[5] We aimed to evaluate the causes of parieto-occipital encephalomalacia and evaluate the clinical and electrophysiological features of children with parieto-occipital encephalomalacia.


   Methods Top


We obtained approval for our study from Dokuz Eylul University Ethics Committee. The study was conducted in our Pediatric Neurology outpatient clinic between September 2012 and September 2013. Medical records of patients admitted during this period of time were evaluated. Patients who have encephalomalacia on parieto-occipital lobes were included in the study [Figure 1]. Hospital records of the patients were reviewed for birth date, sex, parental consanguinity, perinatal history (gestational age, birth weight, history of fetal distress), neonatal period (hypoglycemia, need for neonatal intensive care unit, neonatal convulsions), electroencephalographies (EEGs), Denver II development screen test results, evidence of epilepsy and refractory epilepsy (defined as at least one seizure during the past 6 months despite treatment with two antiepileptic drugs) seizure types, seizure frequency, visual problems, neurologic examination findings. [6] The last EEG of each patient was read again and classified as normal and abnormal. Abnormal EEGs were classified into two groups as "EEGs with nonspecific changes (slowing of the background EEG rhythm, intermittent or continuous generalized, localized or regional slowing)" and "epileptiform EEGs (spike, polyspike, sharp wave, spike wave, sharp slow wave, and polyspike wave)." Lateralization (right sided, left sided, bilateral or generalized) and localization (frontal, temporal, parietal, and occipital) of the epileptiform discharges were noted. Delay in each category of Denver II development screen test result (social contact, language, fine motor, and gross motor skills) were measured as years.
Figure 1: Magnetic resonance imaging of a patient with parieto-occipital encephalomalacia

Click here to view


The study was approved by Dokuz Eylul University Ethical Committee. Informed consent was obtained from the parents of patients. SPSS, version 15 (SPSS Inc., Chicago, IL, USA), was used for statistical analysis. Potential differences in study population characteristics were calculated by Chi-square test and Mann-Whitney U-test. P < 0.05 was considered statistically significant.


   Results Top


Twenty-seven children (6 females and 21 males) were included in the study. Mean age of the patients was 6.59 years (standard deviation = 5.01). Characteristics of patients are listed on [Table 1]. Eleven patients (40.7%) had neonatal hypoglycemia, 8 of them (29.6%) were born preterm and 11 of them (40.7%) had a history of perinatal hypoxia. Twenty-four (88.9%) of the patients needed hospitalization during the neonatal period. Twenty-five (92.6%) patients had a history of either neonatal hypoxia, hypoglycemia or preterm birth. 20 of them (74.1%) had neonatal seizures. Twenty-three patients (85.2%) had epilepsy and nine of the epileptic patients (39%) had refractory seizures. Neurologic examination was abnormal in 24 (88.9%) patients. Nine (33.3%) had microcephaly, 22 (81.5%) had psychomotor retardation, 15 (55.6%) had visual problems. Median delay in social contact (in years) was 1.75 (±2.81), in language was 1.75 (±2.54), in fine motor skills was 1.80 (±2.49), and in gross motor skills was 0.66 (±2.41) years.
Table 1: Characteristics of patients with parieto-occipital encephalomalacia

Click here to view


Most of the patients had generalized tonic-clonic (8 patients, 29.6%), generalized tonic (5 patients, 15.8%) seizures, and infantile spasms (8 patients, 29.6%). Complex partial seizures and myoclonic seizures were also reported. EEG recordings were performed while awake in 4 (14.8%) patients and asleep in 23 (85.2%) patients. EEG on last examination was abnormal in 16 (%59.3) patients. Eight (50%) of them had bilateral, 4 (25%) had right sided, 3 (18.7) had left-sided and 1 (6.2%) had generalized epileptic discharges. Within patients with abnormal EEG, 9 (56.2%) had temporoparieto-occipital; 4 (25%) had parieto-occipital; 1 (6.2%) had parietal epileptic discharges [Figure 2]. Interestingly, one patient had bilateral frontal spike and wave discharges [Figure 3] and one of them had generalized epileptiform abnormality as continuous spike and wave discharges during sleep [Figure 4]. EEG abnormalities, seizure types and Denver II development screen test results are summarized in [Table 2].
Figure 2: Electroencephalography (EEG) of a patient with parieto-occipital encephalomalacia. The patient is 2.5 years old. EEG during sleep shows bilateral epileptiform disharges on temporal, parietal and occipital lobes

Click here to view
Figure 3: Electroencephalography (EEG) of a patient with parieto-occipital encephalomalacia. EEG during sleep shows bilateral epileptiform discharges on frontal lobes

Click here to view
Figure 4: Electroencephalography (EEG) of a patient with parieto-occipital encephalomalacia. EEG during sleep shows continuous spike and wave discharges

Click here to view
Table 2: Seizure types, EEG abnormalities and Denver II test results of patients with parieto-occipital encephalomalacia

Click here to view


Neonatal hypoglycemia, neonatal hypoxia, preterm birth, hospitalization during neonatal period, history of neonatal convulsion, presence of mental motor retardation, generalized or localized EEG abnormality was not significantly associated with refractory epilepsy. Most of the patients with neonatal convulsions (90%) had psychomotor retardation, but we could not find a statistically significant association between neonatal convulsions and later psychomotor retardation (P = 0.054).


   Discussion Top


Transient changes in blood glucose levels are commonly seen in infants during the metabolic transition period to the extrauterine environment. [2] Neonatal hypoglycemia can cause a well-defined pattern of brain injury with a tendency for the involvement of parietal and occipital white matter. [3],[7],[8],[9] The reason for the involvement of parietal and occipital lobes is not exactly known. [10],[11],[12] Excitatory neurotoxins active at N-methyl-D-aspartate receptors, increased mitochondrial free radical production, initiation of apoptosis and alterations in cerebral energy production are the possible mechanisms of hypoglycemia induced cellular injury. [13],[14],[15],[16] Parietal and occipital lobes are not especially sensitive to these effects. [17] However, it is shown that during hypoglycemia occipital lobes regional glucose uptake decreases due to the increased regional cerebral blood flow. [18] A difference in regional blood flow may help hypoglycemic damage through either loss of autoregulation or delayed hypoperfusion. [8] Neuronal injury in hypoglycemia may be limited to the areas with well-developed excitatory amino acid receptors. [8] Other comorbidities like ischemia and hypoxemia can also contribute to the brain injury. [17]

Here we evaluated the causes and clinical courses of pediatric parieto-occipital brain injury. We noticed that injury to the parieto-occipital lobes commonly occurs during the neonatal period. Only two of our patients reported an uneventful prenatal and natal history. These patients both had a history of head trauma. The remaining (25 patients; 92.6%) had complicated perinatal period such as preterm birth, neonatal hypoglycemia or hypoxia, and some of them had both. Eleven patients (40.7%) had neonatal hypoglycemia. In another study about occipital lobe injury in children, perinatal hypoglycemia was reported to be the most common cause (71.4%) of occipital lobe injury. [17] A limitation of our study was that we did not have detailed information about the lowest blood glucose level or duration of hypoglycemia in our patients. We also do not know whether the patients with a history of neonatal hypoxia or preterm birth had also coexisting hypoglycemia.

Epilepsy is a commonly reported neurologic problem in patients with parieto-occipital lobe injury. [2],[17] We observed that 23 (74.1%) of our patients had epilepsy and nine of the epileptic patients (39%) had refractory seizures. Most of our patients developed seizures during the neonatal period. Nearly half of the patients had bilateral epileptiform discharges originating from temporal, parietal and occipital lobes. We did not find a significant association between the localization of the abnormal discharges and refractoriness of seizures. One of our patients had bilateral frontal discharges and one had continuous spike and wave discharges during sleep. We do not know the reason of this localization. Occipital lobe injury does not typically cause epileptic discharges whereas damage to the neighboring cortex can be the real cause. [17],[19] The reason why some of these patients have refractory seizures is not known. Infantile spasms, generalized seizures, focal seizures, and febrile seizures are reported in these patients. [2] In our study, most of the patients had generalized seizures and infantile spasms. Abnormal discharges in the occipital lobe are thought to activate thalamus and reticular system causing infantile spasms. [17]

Neurologic examination was abnormal in 24 (88.9%) of our patients. Cognitive impairment, motor impairment and microcephaly were commonly noted. Tweny-two (81.5%) children had psychomotor retardation assessed by Denver II development screen test. Development of fine motor skills, language and social contact were more severely impaired than gross motor skills. Burns et al. reported that cognitive impairment was more likely than motor impairment in patients with symptomatic hypoglycemia because of the pattern of white matter injury sparing basal ganglia, thalami and posterior limb of the internal capsule. [2] Disorganization of brain tissue and epilepsy can affect mental development in these patients and mental functions were reported to improve after seizure control. [17] In our study, we could not find a significant association between psychomotor retardation and refractory seizures. However, none of the patients with normal development had refractory epilepsy. Most of our patients with neonatal convulsions (90%) had psychomotor retardation, but we could not find a statistically significant association between neonatal convulsions and later psychomotor retardation (P = 0.054).

Suboptimal head growth can be seen in patients with parieto-occipital lobe injury. [2] Nine (%33.3) of 27 children had a head circumference <3 rd percentile for age.

Visual problems is another important sequelae in children with parieto-occipital lobe injury. [17] Cortical visual impairment was observed in 15 (55.6%) of our patients. It is also not exactly known why some patients with occipital lobe injury do not have abnormal vision. [2]

In our study, we observed that most of the patients with parieto-occipital lobe injury had an eventful perinatal history like hypoxia, hypoglycemia or preterm birth, and sometimes these conditions were together. Epilepsy, psychomotor retardation, and visual impairment were the most common neurologic sequelae. Our study has some limitations. The number of patient group was small and it was a retrospective study. Further studies are needed for defining the reason why some patients with parieto-occipital encephalomalacia have less neurologic sequelae than others.

 
   References Top

1.
Murakami Y, Yamashita Y, Matsuishi T, Utsunomiya H, Okudera T, Hashimoto T. Cranial MRI of neurologically impaired children suffering from neonatal hypoglycaemia. Pediatr Radiol 1999;29:23-7.  Back to cited text no. 1
    
2.
Burns CM, Rutherford MA, Boardman JP, Cowan FM. Patterns of cerebral injury and neurodevelopmental outcomes after symptomatic neonatal hypoglycemia. Pediatrics 2008;122:65-74.  Back to cited text no. 2
    
3.
Anderson JM, Milner RD, Strich SJ. Effects of neonatal hypoglycaemia on the nervous system: A pathological study. J Neurol Neurosurg Psychiatry 1967;30:295-310.  Back to cited text no. 3
[PUBMED]    
4.
Caraballo RH, Sakr D, Mozzi M, Guerrero A, Adi JN, Cersósimo RO, et al. Symptomatic occipital lobe epilepsy following neonatal hypoglycemia. Pediatr Neurol 2004;31:24-9.  Back to cited text no. 4
    
5.
Traill Z, Squier M, Anslow P. Brain imaging in neonatal hypoglycaemia. Arch Dis Child Fetal Neonatal Ed 1998;79:F145-7.  Back to cited text no. 5
    
6.
Chawla S, Aneja S, Kashyap R, Mallika V. Etiology and clinical predictors of intractable epilepsy. Pediatr Neurol 2002;27:186-91.  Back to cited text no. 6
    
7.
Spar JA, Lewine JD, Orrison WW Jr. Neonatal hypoglycemia: CT and MR findings. AJNR Am J Neuroradiol 1994;15:1477-8.  Back to cited text no. 7
    
8.
Barkovich AJ, Ali FA, Rowley HA, Bass N. Imaging patterns of neonatal hypoglycemia. AJNR Am J Neuroradiol 1998;19:523-8.  Back to cited text no. 8
    
9.
Banker BQ. The neuropathological effects of anoxia and hypoglycemia in the newborn. Dev Med Child Neurol 1967;9:544-50.  Back to cited text no. 9
[PUBMED]    
10.
Filan PM, Inder TE, Cameron FJ, Kean MJ, Hunt RW. Neonatal hypoglycemia and occipital cerebral injury. J Pediatr 2006;148:552-5.  Back to cited text no. 10
    
11.
Kinnala A, Rikalainen H, Lapinleimu H, Parkkola R, Kormano M, Kero P. Cerebral magnetic resonance imaging and ultrasonography findings after neonatal hypoglycemia. Pediatrics 1999;103:724-9.  Back to cited text no. 11
    
12.
Koh TH, Aynsley-Green A, Tarbit M, Eyre JA. Neural dysfunction during hypoglycaemia. Arch Dis Child 1988;63:1353-8.  Back to cited text no. 12
    
13.
Papagapiou MP, Auer RN. Regional neuroprotective effects of the NMDA receptor antagonist MK-801 (dizocilpine) in hypoglycemic brain damage. J Cereb Blood Flow Metab 1990;10:270-6.  Back to cited text no. 13
    
14.
Wieloch T. Hypoglycemia-induced neuronal damage prevented by an N-methyl-D-aspartate antagonist. Science 1985;230:681-3.  Back to cited text no. 14
[PUBMED]    
15.
Ballesteros JR, Mishra OP, McGowan JE. Alterations in cerebral mitochondria during acute hypoglycemia. Biol Neonate 2003;84:159-63.  Back to cited text no. 15
    
16.
Imai T, Kondo M, Isobe K, Itoh S, Onishi S. Cerebral energy metabolism in insulin induced hypoglycemia in newborn piglets: In vivo 31P-nuclear magnetic resonance spectroscopy. Acta Paediatr Jpn 1996;38:343-7.  Back to cited text no. 16
    
17.
Wang SM, Yang CS, Hou Y, Ma XW, Feng ZC, Liao YZ. Perinatal occipital lobe injury in children: Analysis of twenty-one cases. Pediatr Neurol 2012;47:443-7.  Back to cited text no. 17
    
18.
Mujsce DJ, Christensen MA, Vannucci RC. Regional cerebral blood flow and glucose utilization during hypoglycemia in newborn dogs. Am J Physiol 1989;256:H1659-66.  Back to cited text no. 18
    
19.
Blume WT, Wiebe S, Tapsell LM. Occipital epilepsy: Lateral versus mesial. Brain 2005;128:1209-25.  Back to cited text no. 19
    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4]
 
 
    Tables

  [Table 1], [Table 2]



 

Top
Print this article  Email this article
 
 
  Search
 
  
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Article in PDF (2,642 KB)
    Citation Manager
    Access Statistics
    Reader Comments
    Email Alert *
    Add to My List *
* Registration required (free)  


    Abstract
   Introduction
   Methods
   Results
   Discussion
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed2161    
    Printed32    
    Emailed0    
    PDF Downloaded125    
    Comments [Add]    

Recommend this journal